รายละเอียดคอร์ส
คอร์สนี้จะทำให้เข้าใจการทำงานของ Naive Bayes เพื่อการพัฒนา AI ให้ฉลาดมากขึ้น และสามารถนำความรู้ไปประยุกต์ใช้กับการทำงานจริง
คำอธิบายคอร์สออนไลน์
Naive Bayes คือ โมเดลคณิตศาสตร์ (AI) ที่ใช้หลักความน่าจะเป็นแบบมีเงื่อนไขของเบส์ในการจำแนกประเภทของข้อมูล ยกตัวอย่างการจำแนกประเภทของข้อมูลเช่น I) การพยากรณ์ว่าพรุ่งนี้หุ้นจะขึ้นหรือจะลง II) การวิเคราะห์รูปภาพว่าเป็นหมาหรือแมว III) การวิเคราะห์รูปภาพตัวอักษรไทยว่าเป็นอักษรอะไร ในคอร์สนี้เราจะมาเรียน
1. ทฤษฎีคณิตศาสตร์ที่ใช้ในการสร้าง Naive Bayes (เรียนกันตั้งแต่ assumption ของ model)
2. เขียน Code สร้าง Naive Bayes from Scratch (เริ่มเขียน code ตั้งแต่ต้นจากความว่างเปล่า)
3. ตัวอย่างการประยุกต์ใช้ Naive Bayes ในชีวิตจริง
จุดเด่นของคอร์ส
1. คณิตศาสตร์ที่ยากจะถูกแปลงเป็น "ภาพ" และถูกอธิบายด้วย "ภาษาที่คนทั่วไปเข้าใจได้"
2. นักเรียนเห็นภาพรวม (Overview) และความต่อเนื่องของเนื้อหา
3. อธิบายทุกขั้นตอนอย่างละเอียดและรัดกุม (ย่อยมาให้อย่างดีแล้ว)
4. ตัวอย่างการคำนวณด้วยมือ (เพื่อให้นักเรียนได้ลงมือปฏิบัติและทบทวนความเข้าใจ)
5. ส่วนประกอบของคอร์สนี้มีครบทั้ง I) ทฤษฎี II) เขียน code III) การประยุกต์ใช้
ใครควรเรียนคอร์สออนไลน์นี้
1. ผู้ที่ต้องการเข้าใจทฤษฎีเบื้องหลังจากทำงานของ Naive Bayes
2. ผู้ที่ต้องการเขียน code Naive Bayes ขึ้นมาเอง โดยไม่ใช้เครื่องมือสำเร็จรูปใด ๆ
3. ผู้ที่ต้องการนำความรู้ไปประยุกต์ใช้กับการทำงานจริง
4. ผู้ที่ต้องการพัฒนา AI ให้มีศักยภาพสูงขึ้นและตอบโจทย์ specific need ของงานตัวเอง (ใครที่มี pain point กับเครื่องมือสำเร็จรูปจะเข้าใจดี)
ผู้เรียนต้องมีความรู้อะไรมาก่อน
คอร์สนี้เหมาะสำหรับผู้เริ่มต้นศึกษา AI